Banerjee and Bose Empower/Recharge Educators During CISTEME365 Session About Power and Energy

Subhonmesh Bose does a demo for the educators.
Subhonmesh Bose does a demo for the educators.

September 16, 2019

In the recent CISTEME365 Institute from July 22–August 3, 2019, two rising stars in Electrical and Computer Engineering (ECE), Assistant Professors Subhonmesh Bose and Arijit Banerjee, presented a session on their areas of research—power and energy— to 13 educators participating in the institute. Part of the 3-year NSF grant, Catalyzing Inclusive STEM Experiences All Year Round CISTEME365, their integrated presentation walked through a history of power systems, the physics behind electromechanical energy conversion, and shared research frontiers in power and energy. Plus, a dialogue ensued where both the K–12 and higher education teachers discussed STEM pedagogy beneficial for all ages.

Bose and Banerjee’s session was replete with fun and exciting demos. But first, they taught baseline principles about their areas of expertise, then used fun demonstrations to underscore the principles taught.

Subhonmesh Bose discusses how solar energy can be used to impact the power grid.Subhonmesh Bose discusses how solar energy can be used to impact the power grid.

For example, Bose discussed principles related to his research on the electric power grid, which addresses algorithm and market design questions that arise in integration of variable renewable and distributed energy resources in the grid. To achieve his goals, Bose says he utilizes optimization, control theory, microeconomics, and game theory tools. His current projects include optimization of dispatch with variable wind, designing meaningful prices for wholesale electricity markets under uncertainty, market design for multi-area power systems, and electrification of transportation.

One principle Bose sought to convey to the Institute educators was this: “Electricity generation largely relies on conversion of mechanical motion to electricity,” So, to illustrate this principle, he solicited the help of various educators in a demo where participants used a stationary bike to drive electrical current through a series of light bulbs.

Pedaling a stationary bike, Elizabeth Ohr, Urbana High School Science teacher, produces enough current to light up all the bulbs but one.Pedaling a stationary bike, Elizabeth Ohr, Urbana High School Science teacher, produces enough current to light up all the bulbs but one.

“The harder you push, the more bulbs turn on,” he explains, adding that “The same principle underlies electricity generation from power plants that use fossil fuels such as coal or natural gas, nuclear technology, or the force of flowing water (hydroelectricity).” The educators also got a sense of the degree of mechanical energy required to make the bulbs light up—no matter how long or how hard they tried, none were able to make the final light bulb turn on!

Also related to energy, Banerjee’s research involves advancing energy conversion by functionally integrating power electronics, electromechanics, and control, especially via creating new energy conversion architectures. Some real-world applications of his research include: renewable energy systems, robotics, system-level monitoring and diagnostics, and, like Bose, electric transportation systems.

Banerjee also treated the teachers to several fun demos. In fact, he says these are the kinds of things he does in his classroom to engage his students. Not only that, he admits, “I myself get bored in my classroom if I don’t bring demos!”

Arijit Banerjee does a power demo for the educators.Arijit Banerjee does a power demo for the educators.

Regarding his use of demonstrations as part of his pedagogy, he admits, “A major challenge that students face in the classroom is connecting math and theory with the craft of real-world systems. I love to conceptualize and create interactive demos that can provide a context-based learning framework.” According to Banerjee, these demos enable an engaging environment in his classrooms that bring students to the center stage “rather than me blabbering for hours,” he admits. “The classroom becomes more of a discussion forum.”

Plus, while learning from a textbook is important, it’s not the end-all in terms of instruction and learning. “Many times these demos help me show students the boundary of textbook knowledge,” he says.

Plus, the demos aren’t just to keep the students engaged; according to Banerjee: “It keeps me excited about teaching,” he confesses.

Elizabeth Ohr, Urbana High School Science teacher, helps out with a demonstration by pedaling a stationary bike in order to make the light bulbs glow.Elizabeth Ohr, Urbana High School Science teacher, helps out with a demonstration by pedaling a stationary bike in order to make the light bulbs glow.

While Bose used the stationery bike/light bulb demo, he acknowledges that he himself is a theorist, so his demonstrations are often computer simulations. However, because his colleague, Banerjee, is excellent at designing hardware-based demonstrations to use in his classes to explain concepts, Bose has invited him to show some of these demos in his own classes, “to make the subject come to life.”

“Students enjoy a lot when concepts are linked to tangible outcomes,” he continues, “whether in simulations or in hardware implementations. It motivates them to learn the abstract concepts. Theory taught in isolation requires an effort on the student’s part to extrapolate and see the application. Showing that ‘It works!’ is typically better than saying ‘It can be applied.’”

Bose and Banerjee say they taught a session in the CISTEME365 Institute partly to help out a colleague, Lynford Goddard, PI of the grant, and also to vicariously impact younger students.

For Bose, it’s especially the latter. He says he’s presented at a couple of summer camps over the last several years, including Goddard’s GLEE camp. He says these presentations allow him to reach an audience he seldom gets to interact with: K–12 students. “I am motivated to inspire K–12 students to pursue STEM fields. I personally find my field of study exciting and rewarding; I hope to convey that excitement to students.”

Arijit Banerjee (left) listens while Subhonmesh Bose teaches the educators about his research about power.Arijit Banerjee (left) listens while Subhonmesh Bose teaches the educators about his research about power.

Bose adds that he was happy to contribute to Goddard’s effort in the program, reporting that: “CISTEME provides the rare opportunity to talk to the educators who work with these students on a daily basis.”

Arijit Banerjee indicates that he got involved with the CISTEME365 Institute because of his relationship with Lynford Goddard. “To be honest, it is because of Lynford,” he admits. “He has been one of my amazing mentors in the department. At the end of the day, I feel happy being a part of the ECE/U of I family and helping one another drive impact.”

Anita Alicea, a STEM integration specialist at Sarah E. Goode STEM Academy in Chicago participates in a demo during Bose and Banerjee’s power and energy session.Anita Alicea, a STEM integration specialist at Sarah E. Goode STEM Academy in Chicago participates in a demo during Bose and Banerjee’s power and energy session.

Regarding the benefit of bringing K–12 educators to campus and interacting with them, Banerjee shares what impact he feels the program had on the teachers. “CISTEME365 is a tremendous program, not only for the teachers who are coming to the campus, but also for us,” he admits. “We share each other's strengths and challenges and learn from each other.”

Banerjee claims that he and Bose often discuss pedagogical philosophies at length, even more than about content, discussing more thought-provoking questions, such as “How do we engage students?” and “What is the role of teachers in the present education scenario?” He says the two hoped the same would be true when teachers come to these sessions.

“We do not know everything—the more we share, the more we learn,” claims Banerjee. “I hope the teachers who came this time will go back to their respective institutions recharged and rejuvenated, expanding their knowledge horizons, and more importantly feeling appreciated for all the hard work they put in to create better human beings.”

Similarly, Bose also agreed that the interaction with the K–12 educators and the discussion regarding pedagogy was beneficial for all involved.

Arijit Banerjee discusses electromechanical energy conversion with the educators.Arijit Banerjee discusses electromechanical energy conversion with the educators.

According to Bose, “We, the professors, are educators ourselves. We face challenges in classrooms that are similar to those faced by teachers in middle and high schools. The CISTEME program is a great opportunity to cross-pollinate ideas and learn from each other. Through this interaction, I learned more about the classrooms of the students before they join the university. The better I understand the background of the students, the better position I am in to give them a good learning experience.”

Bose adds that in addition to Institute participants being exposed to the professors’ views and styles of teaching, the K–12 teachers got to see the frontier of research in various fields. “Linking modern innovation and research directions to class material will hopefully make the class material more exciting to students,” he claims.

However, while the educators loved the demos, the idea is for them to take what they’re learning and try to implement it in their classrooms and after-school clubs. One challenge might be the lack of similar high-tech equipment.

Sarah E. Goode STEM Academy’s arts instructor, Irica Baurer, gets all but the final bulb to light up when doing the stationary bike demo.Sarah E. Goode STEM Academy’s arts instructor, Irica Baurer, gets all but the final bulb to light up when doing the stationary bike demo.

However, Bose claims some demonstrations don’t require high-tech equipment. For example, he cites Banerjee’s explanation of Lenz’ law, using a magnet and a chalk passing through a copper tube. “Albeit simple,” Bose states, “the demonstration is quite powerful to explain concepts in electromagnetism. Such demonstrations, I would imagine, are easy to implement.” While he says some of the other demos that Banerjee designed require skills that may be challenging to replicate, he suggests that if such tools were standardized and produced in bulk, these types of demonstrations could reach a wider audience.

Regarding the equipment for his demos, Banerjee reveals that he’s been very fortunate to obtain support from ECE and its Grainger Center for Electric Machinery and Electromechanics in order to create the demos and the overall demonstration framework he uses. “It is a lot of investment of resources and time and not easy to replicate at scale,” he admits.

However, one of Banerjee’s outreach objectives is to help teachers develop low-cost alternatives in order to implement his demos in their classrooms. Over the next few years, he plans to share the blueprints and work with the teachers to find low-cost alternatives to create these demos at scale in order to demonstrate the same physical principles.


Author/Photographer: Elizabeth Innes, Communications Specialist, I-STEM Education Initiative

More: CISTEME365, Electrical and Computer Engineering, Teacher Professional Development, 2019

For additional istem articles on CISTEME365, please see:

Subhonmesh Bose and Arijit Bannerjee discuss STEM pedagogy with the educators.
Subhonmesh Bose and Arijit Bannerjee discuss STEM pedagogy with the educators.




SOLIDarity EXperiences (SOLIDEX) through the Eyes of Children

What do children aged 11-13 in two countries think about solidarity?
Full Story

Students launch ASL STEM Vocabulary App Company

Students launch ASL STEM Vocabulary App Company
Full Story

Innovation, Inspiration on display at the Undergraduate Research Symposium

Undergraduate Research Week took place April 23-29, 2023, and culminated Thursday, April 27, 2023
Full Story

What would you like to see – 3D printers? Magnets? Solar-powered racing cars? Robobrawl?

March 28, 2023
EOH occurs Friday, March 31, and Saturday, April 1, from 9 a.m. to 4 p.m. daily.
Full Story

Tour of Illinois’ Materials Research Lab through I-MRSEC sparks Franklin students’ interest in Materials Science

March 1, 2023
Students from the Champaign middle school had a tour of the Material Research Laboratory (MRL) in early February.
Full Story

Nobel Project’s End-of-Year Zoom Bash Recaps Learning

February 1, 2022
The STEM Illinois Nobel Project held a special, end-of-the-year Zoom event celebrating its participating students’ achievements.
Full Story

It’s not magic, it’s physics

January 26, 2022
In Franklin STEAM Academy, Musical Magnetism program makes STEM fun, approachable.
Full Story

Program prepares STEM educators to teach all students

November 30, 2021
This summer, a group of educators gathered to learn about engaging STEM activities they can do with their students.
Full Story

Research Experiences for Undergraduates (REU) program

November 11, 2021
Undergrads get a taste of research through I-MRSEC’s REU program.
Full Story

Goldstein’s Renaissance Engineering Summer Camp

November 1, 2021
Goldstein’s Renaissance Engineering Summer Camp Incorporates Art, Design, Mechatronics, and Mentoring
Full Story

TechTogether Chicago to Redefine the Hacker Stereotype

July 10, 2021
New workshops that can help inspire students to pursue careers in technology..
Full Story

Aerospace Engineering Launches Virtual Summer Camps to Pique Students’ Interest in Aero.

July 2, 2021
Design an aircraft then watch it soar after launching it with a huge rubber band. Build a Mars lander to safely transport a real egg, then test the contraption by dropping it from a second story window.
Full Story

Undergrads Experience Materials Science Research Courtesy of the I-MRSEC REU

June 16, 2021
Ten undergraduate students are spending the summer of 2021 discovering what research is like.
Full Story

MatSE Afterschool Academy

MatSE Afterschool Academy

June 14, 2021
MatSE Afterschool Academy to Introduce Students to Materials Science and Beyond.
Full Story

Taylor Tucker Embraces Multidisciplinary Interest

Taylor Tucker Embraces Multidisciplinary Interest

June 14, 2021
Taylor Tucker Embraces Multidisciplinary Interest While Researching Task Collaboration.
Full Story

Exposes Franklin Middle Schoolers to Science, CS

What Studying Engineering at Illinois is Like?

May 25, 2021
NSBE’s Michaela Horn Exposes Franklin Middle Schoolers to Science, CS, and What Studying Engineering at Illinois is Like.
Full Story

Jenny Saves a Convertible.

Children’s-Book-Writing Duo/

May 19, 2021
Convertibles and Thunderstorms—Children’s-Book-Writing Duo on Their Way Thanks to Illinois Training and Encouragement from Mentors.
Full Story

Improve Learning in Engineering

Improve Learning in Engineering

May 17, 2021
Liebenberg Espouses Mini-Projects to Engage Students Emotionally, Improve Learning in Engineering.
Full Story

Joshua Whitely makes an adjustment to the 3D Bioprinter during the demo.

BIOE435 Capstone Projects

May 12, 2021
BIOE435 Capstone Projects - BIOE Seniors Use Knowledge/Skills to Problem Solve.
Full Story

Elani and Gonzalo shine a UV light on a rose that has absorbed a solution that has made it fluorescent.

Illinois Scientists Shine a (UV) Light on Fluorescence

May 7, 2021
What is fluorescence? What causes it?
Full Story

Joshua Whitely makes an adjustment to the 3D Bioprinter during the demo.

HackIllinois 2021 “Rekindled Connections” With The Tech Community

May 5, 2021
Annual student hackathon HackIllinois with the aim of developing projects on current problems facing society.
Full Story

A Shane Mayer-Gawlik image of the Bridger Aurora, part of his Night Skies photography collection exhibited at the Art-Science Festival.

The Art-Science Festival

April 26, 2021
Illinois Art-Science Festival: Illuminating the Universe...from the Quantum World to the Cosmos.
Full Story

Joshua Whitely makes an adjustment to the 3D Bioprinter during the demo.

Illinois Engineering Seniors Prepared to Change the World

April 22, 2021
Ready. Set. Go! Illinois Engineering Seniors Prepared to Change the World.
Full Story

HML 2021 Virtual Health

HML 2021 Virtual Health

April 19, 2021
Make-a-Thon Gives Citizen Scientists a Shot at Making Their Health-Related Innovations a Reality.
Full Story

I-MRSEC’s Music Video

I-MRSEC’s Music Video

April 7, 2021
I-MRSEC’s Music Video for EOH ’21 Plugs Graphene, 2D Materials
Full Story

Health Make-a-Thon Orientation

HML 2021 Health Orientation

March 30, 2021
HML 2021 Health Make-a-Thon Orientation Prepares Finalists for Competition.
Full Story

Andrea Perry shows Franklin students how to take apart the magnetic drawing board they received in their kit

Musical Magnetism

March 25, 2021
Musical Magnetism: Encouraging Franklin Middle Schoolers to Express Science Via the Arts.
Full Story

Carmen Paquette street performing.

Love of Science

March 9, 2021
Paquette Conveys Her Love of Science, Dance to Franklin STEAM Students Via Musical Magnetism.
Full Stroy

An Engineering Exploration participant exhibits the tower they built as part of the engineering challenge related to Civil Engineering

Engineering Exploration

March 2, 2021
SWE’s Engineering Exploration Outreach Lives Up to Its Name.

ChiS&E’s Family STEM Day

ChiS&E’s Family STEM Day

February 23, 2021
Helps Chicago Youngsters Progress Along the STEM Pipeline Toward Engineering.

Kathny Walsh

Kathy Walsh

February 17, 2021
On Her First Foray into STEAM, Kathy Walsh Acquaints Franklin Students with Microscopy, Haiku.

ChiS&E student

ChiS&E CPS Students

January 19, 2021
Illinois Undergrads Encourage ChiS&E CPS Students Toward Possible Careers in Engineering.

I-MRSEC’s Music Video

CISTEME365 Provides Year-Round PD/Community

January 4, 2021
to Illinois Teachers in Support of Informal STEM Education Efforts to Underserved Students.